If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-19.x-90=0
We add all the numbers together, and all the variables
x^2-19x-90=0
a = 1; b = -19; c = -90;
Δ = b2-4ac
Δ = -192-4·1·(-90)
Δ = 721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{721}}{2*1}=\frac{19-\sqrt{721}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{721}}{2*1}=\frac{19+\sqrt{721}}{2} $
| 1.9=5.4-0.5x | | 3x+22+6x+39=180 | | 7x-4=24+3x | | (-3/4)x=10 | | 1/6x+4=16 | | 1.5x-6=60-48x | | 20+k=-3+2(3k-1) | | 4(2x+7)=-29+41 | | 6u=-8+5u | | -6n+48=48-7n | | x+10+2x-5=180 | | 3(2a-5)=8a-9 | | 5x-8=7+(3-11x) | | 3h+h-2h-1=9 | | 4=(a+5)-2 | | 5x-14=4+8 | | 6+2x-21=x | | 7x–3(x–9)=7 | | -9(1-5x)=8x+28 | | ½p=8 | | 0x-19=-2x-5 | | 2x+4x-5x=19 | | 8+x/6=23 | | z+30=-25 | | 6x+1=6x–8 | | 6(4+5x)=-28+4x | | 39*10^4x=390 | | 3b+8=5b-6 | | m=-125 | | (n+6)(2n+7)=0 | | A=7/6(h-6) | | 3x+5–2x+10–x=0 |